Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A consequence of a nonzero occupation fraction of massive black holes (MBHs) in dwarf galaxies is that these MBHs can become residents of larger galaxy halos via hierarchical merging and tidal stripping. Depending on the parameters of their orbits and original hosts, some of these MBHs will merge with the central supermassive black hole in the larger galaxy. We examine four cosmological zoom-in simulations of Milky Way-like galaxies to study the demographics of the black hole mergers that originate from dwarf galaxies. Approximately half of these mergers have mass ratios less than 0.04, which we categorize as intermediate mass ratio inspirals, or IMRIs. Inspiral durations range from 0.5–8 Gyr, depending on the compactness of the dwarf galaxy. Approximately half of the inspirals may become more circular with time, while the eccentricity of the remainder does not evolve. Overall, IMRIs in Milky Way-like galaxies are a significant class of black hole mergers that can be detected by LISA, and must be prioritized for waveform modeling.more » « lessFree, publicly-accessible full text available June 19, 2026
-
Abstract We present a 3D shape analysis of both dark matter (DM) and stellar matter (SM) in simulated dwarf galaxies to determine whether stellar shape traces DM shape. Using 80 central and satellite dwarf galaxies from three simulation suites (“Marvelous Massive Dwarfs,” “Marvelous Dwarfs,” and the “DC Justice League”) spanning stellar masses of 106–1010M⊙, we measure 3D shapes through the moment of inertia tensor at twice the effective radius to derive axis ratios (C/AandB/A) and triaxiality. We find that stellar shape does follow DM halo shape for our dwarf galaxies. However, the presence of a stellar disk in more massive dwarfs (M* ≳ 107.5M⊙) pulls the distribution of stellarC/Aratios to lower values, while in lower-mass galaxies the gravitational potential remains predominantly shaped by DM. Similarly, stellar triaxiality generally tracks DM triaxiality, with this relationship being particularly strong for nondisky galaxies and weaker in disky systems. These correlations are reinforced by strong alignment between the SM and DM axes, particularly in disk galaxies. Further, we find no detectable difference in either SM or DM shapes when comparing two different supernova feedback implementations, demonstrating that shape measurements are robust to different implementations of baryonic feedback in dwarf galaxies. We also observe that a dwarf galaxy’s shape is largely unperturbed by recent mergers. This comprehensive study demonstrates that stellar shape measurements can serve as a reliable tool for inferring DM shapes in dwarf galaxies.more » « lessFree, publicly-accessible full text available June 12, 2026
-
Abstract We use a sample of 73 simulated satellite and central dwarf galaxies spanning a stellar mass range of 105.3–109.1M⊙to investigate the origin of their stellar age gradients. We find that dwarf galaxies often form their stars “inside-out,” i.e., the stars form at successively larger radii over time. However, the oldest stars get reshuffled beyond the star-forming radius by fluctuations in the gravitational potential well caused by stellar feedback (the same mechanisms that cause dwarfs to form dark matter cores). The result is that many dwarfs appear to have an “outside-in” age gradient atz= 0, with younger stellar populations more centrally concentrated. However, for the reshuffled galaxies with the most extended star formation, young stars can form out to the large radii to which the old stars have been reshuffled, erasing the age gradient. We find that major mergers do not play a significant role in setting the age gradients of dwarfs. We find similar age gradient trends in satellites and field dwarfs, suggesting that environment plays only a minor role, if any. Finally, we find that the age gradient trends are imprinted on the galaxies at later times, suggesting that the stellar reshuffling dominates after the galaxies have formed 50% of their stellar mass. The later reshuffling is at odds with results from thefire-2simulations. Hence, age gradients offer a test of current star formation and feedback models that can be probed via observations of resolved stellar populations.more » « less
-
Abstract Due to their inability to self-regulate, ultrafaint dwarfs are sensitive to prescriptions in subgrid physics models that converge and regulate at higher masses. We use high-resolution cosmological simulations to compare the effect of bursty star formation histories (SFHs) on dwarf galaxy structure for two different subgrid supernova (SN) feedback models, superbubble and blastwave, in dwarf galaxies with stellar masses from 5000 <M*/M⊙< 109. We find that in the “MARVEL-ous Dwarfs” suite both feedback models produce cored galaxies and reproduce observed scaling relations for luminosity, mass, and size. Our sample accurately predicts the average stellar metallicity at higher masses, however low-mass dwarfs are metal poor relative to observed galaxies in the Local Group. We show that continuous bursty star formation and the resulting stellar feedback are able to create dark matter (DM) cores in the higher dwarf galaxy mass regime, while the majority of ultrafaint and classical dwarfs retain cuspy central DM density profiles. We find that the effective core formation peaks atM*/Mhalo≃ 5 × 10−3for both feedback models. Both subgrid SN models yield bursty SFHs at higher masses; however, galaxies simulated with superbubble feedback reach maximum mean burstiness values at lower stellar mass fractions relative to blastwave feedback. As a result, core formation may be better predicted by stellar mass fraction than the burstiness of SFHs.more » « less
An official website of the United States government
